

Enhancing the detection of postpartum depression from electronic health records using machine learning algorithms

Guy Amit, PhD. July 2020

Background and goals

Motivation

- Postpartum depression is one of the most common complications of pregnancy and childbirth, with estimated prevalence of 10-15%
- PPD risk is associated with biological, phycological and sociodemographic factors
- There are no quantitative tools for risk estimation, and screening is typically based on symptom questionnaires (such as the Edinburgh postnatal depression scale)
- Early identification of PPD risk during or before pregnancy may enable effective early intervention

Suggested solution

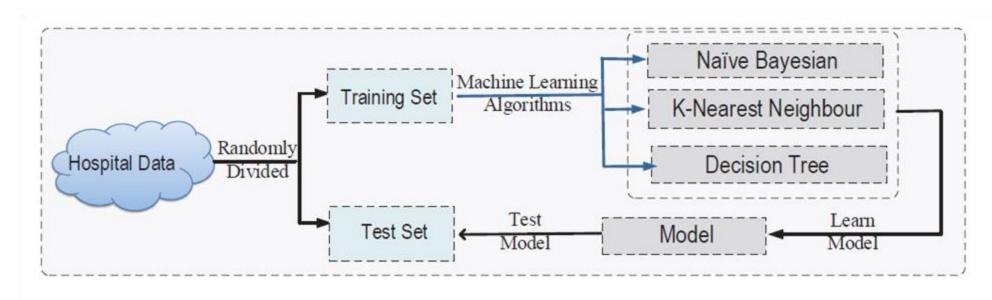
- A predictive model that uses electronic health records (EHR) for learning to identify patients at risk
- May enable early identification of patients at risk
- May be used to augment current screening tools

Expected impact

• Improved outcome for mother and child by early intervention

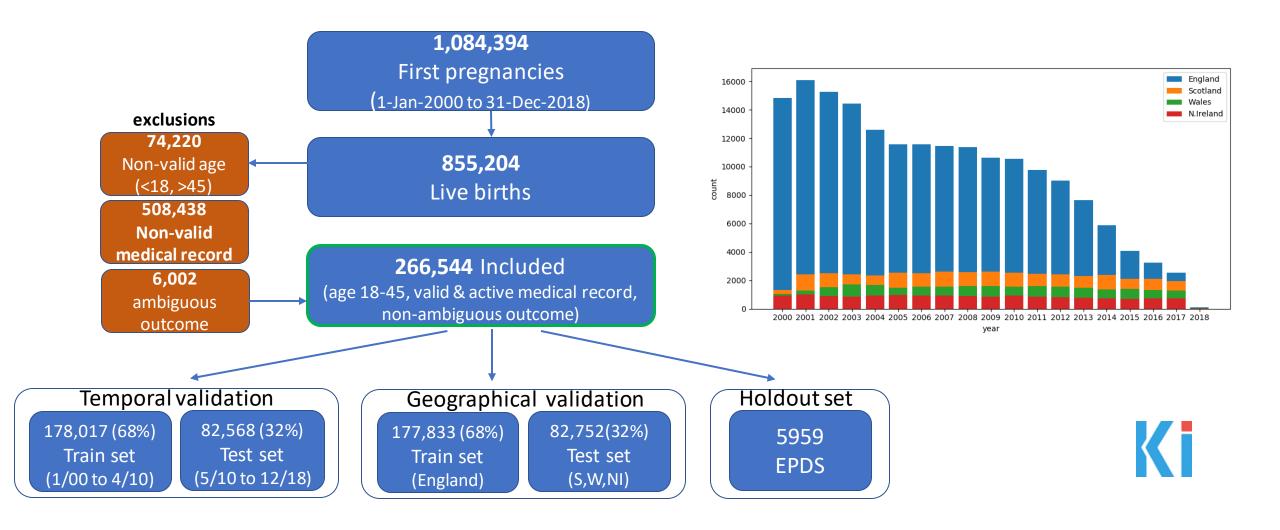
Machine learning in healthcare

Research approach: Use Machine Learning to identify signals within readily available EHR data to indicate individuals and sub-populations with higher risk for health-related outcomes



Data and patient cohort

Dataset: UK primary care electronic health records (IQVIA-IMRD, ~18M patients)



PPD Outcome definition

At least one of the following indications during the first year after birth:

- Women with depression related diagnoses (excluding depression symptoms and anxiety)
- 2. Women with new antidepressant prescriptions (excluding drugs with dual indications)
- 3. Women with depression related non-pharmacological treatment (NPT)

	Recorded Depression Tx	No recorded Depression Tx	Total (% pts)
Recorded Depression Dx	16,284	5,869	22,153 (8.3%)
No recorded Depression Dx	13,555	230,836	
Total (% pts)	29,839 (11.2%)		35,708 (13.4%)

PPD	Train	Test	Holdout set
prevalence	set	set	
Geographical validation	12%	15%	20% (18%,26%)
	(E)	(S,W,NI)	E S,W,NI
Temporal validation	14%	12%	20% (18%,29%)
	(00-10)	(10-18)	00-10 10-18

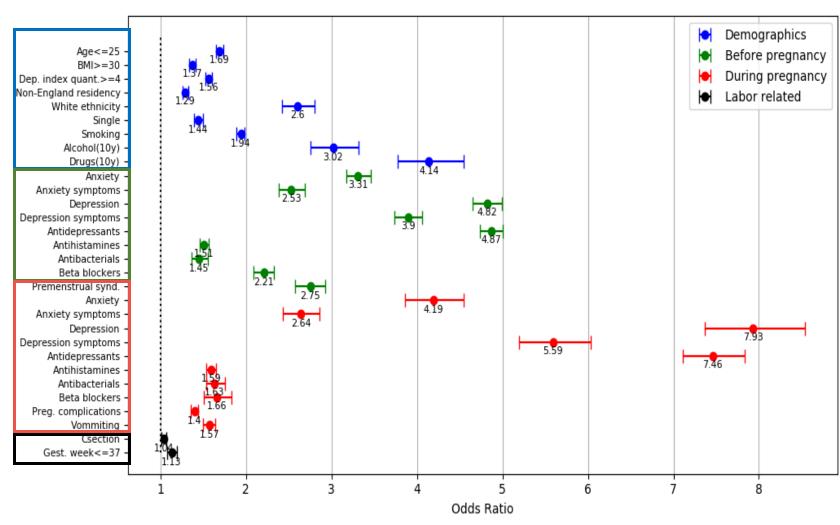
Tx: treatment (antidepressants or NPT); Dx: diagnosis code

Predictor variables

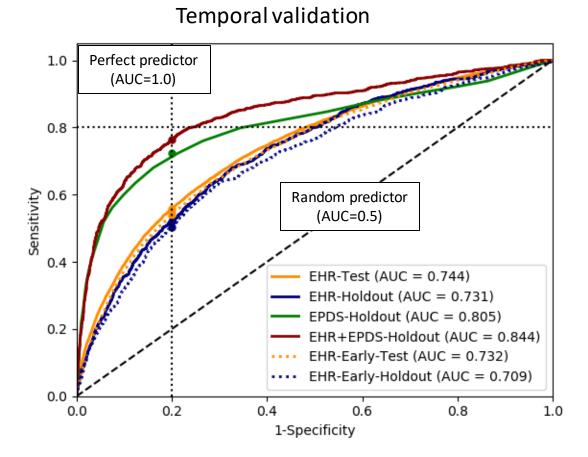
- Demographic and socioeconomic
 - Age, BMI, marital status, ethnicity
 - Deprivation index, smoking, alcohol-use, drug-use
- Medical diagnoses during pregnancy
 - Mental disorders and symptoms: depression, anxiety, psychosi
 - o Pregnancy complications: GDM, preeclampsia, vomiting
 - Miscellaneous health conditions: migraine, diarrhea
- Labor and infant-related
 - Labor complications: cesarean section, episiotomy
 - o Infant-related: gestational week, birth weight, APGAR, feeding type
- Medical diagnoses before pregnancy (2y)
 - Mental disorders and symptoms, PMS
 - Visit count
- Drug prescriptions during / before pregnancy (2y)
 - Antidepressants, antibacterial, antihistamines, beta-blocking
 - Drug prescription count

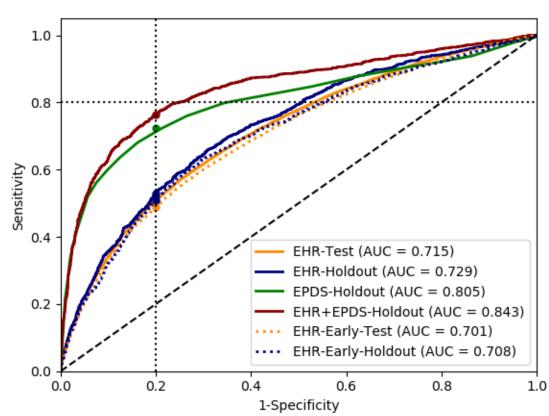
Patient characteristics and univariate analysis

Characteristic	Value	
N	266544	
Age (yrs)	30.0±5.8	
Ethnicity		
White	99971 (37.5%)	
Asian	7367 (2.8%)	
Black	3167 (1.2%)	
Other	2412 (0.9%)	
Unknown	152573 (57.2%)	
Marital status		
Single	34145 (12.8%)	
Married	62929 (23.6%)	
Unknown	169470 (63.6%)	
Country		
England	182506 (68.5%)	
Scotland	42113 (15.8%)	
Wales	26565 (10.0%)	
N. Ireland	15360 (5.8%)	
Deprivation index (quantile)	3.03±1.3	
Pre-pregnancy BMI	25.4±5.0	
Cesarean section	51151 (19.2%)	
Smoking	64778 (24.3%)	
History of depression	17384 (6.5%)	



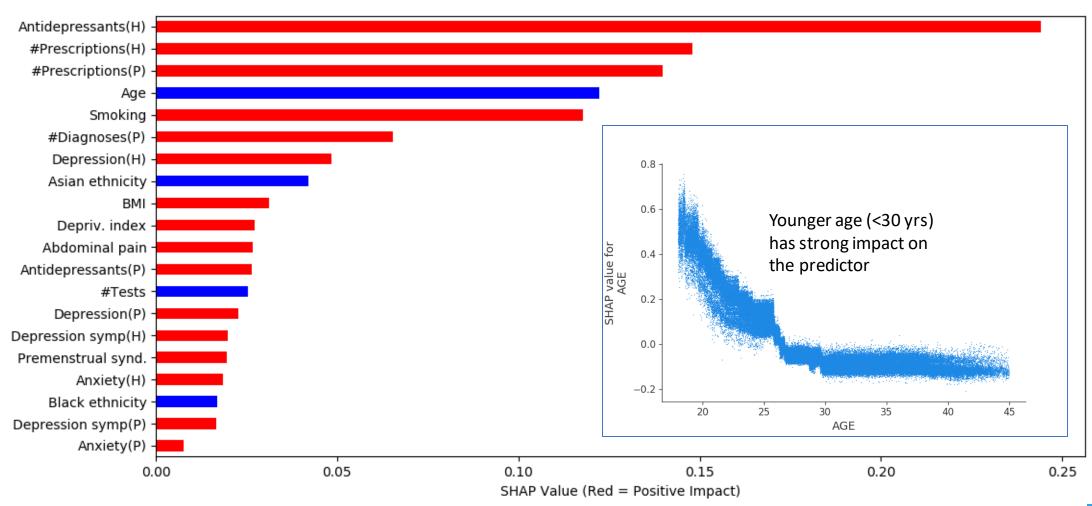
Prediction performance (gradient boosting trees models)





- Combining EHR-based prediction with EPDS score improved of EPDS-alone (sensitivity 0.76 vs. 0.72, specificity 0.8)
- Early EHR-based prediction (before pregnancy) is nearly as accurate as late prediction (after labor)

Variable importance (SHAP analysis[†])



P=during pregnancy, H=History (2y before pregnancy) Higher SHAP value = stronger variable contribution

Summary and conclusions

- PPD can be predicted from EHR data with fair accuracy, even before pregnancy
- EHR-based prediction can improve the accuracy of EPDS for PPD screening
- Although some of the risk factors are well known, integrating and quantifying them into an accessible risk score may have clinical value
- Future work:
 - External validation
 - Deployment in a clinical environment
 - A prospective study

Collaborators

Weil Cornell Medicine

- Jyotishman Pathak
- Yiye Zhang
- Alison Herman
- Rochelle Joly
- Meghan R. Turchioe

Sheba Medical Center

Vered Bar

Our team at KI

- Irena Girshovitz
- Pinchas Akiva

Contact: guy@kinstitute.org.il

http://kinstitute.org.il

